
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Cloud Based Reconfigurable DC Motor Controller Code

Design Using IOPT Models

R.Nithya
1

, S.Usha
2

Dept. Of Embedded System Technologies, Sri Sai Ram Engineering College, Chennai, India

Dept. Of Electronics And Communication Engineering, Sri Sai Ram Engineering College, Chennai, India

Abstract: The current integrated circuit

technologies are approaching their physical limits

in terms of scaling and power consumption,

during this context, the electronic design

automation trade is pushed towards finding more

challenging issues in terms of performance,

scalability, adaptability, and reduced development

time. The combination of an intuitive graphical

modeling language, in conjugation with automatic

model checking and code generation tools is

proposed. The proposed framework contributes to

significantly reduce development time, both

during the specification, system design phase and

during the test. To demonstrate the proposed

approach, the Brushless DC Motor closed-loop

speed controller is designed with IOPT Petri Net

models. The IOPT Petri Net model is an

integrated development environment offered by

IOPT-Tools. IOPT- Nets is a Web based Petri net

class specifically designed to support the

implementation of embedded system controllers

without the need to manually write software or

hardware description programs. The IOPT Web

service includes an interactive graphical editor to

plan IOPT models, a model checking framework

consisting of a query system and state space

generator, and automatic code generation tools to

provide software or hardware controller

implementations. The BLDC Motor speed

controller designed rely on several subsystems, as

well as noise filter, Quadrature decoder, PWM

generator and a BLDC commutation manager.

The sub-systems were modeled by adopting IOPT

models, analyzed using the model checking tools,

leading to the automatic creation of VHDL

modules for every sub-system.

1. INTRODUCTION

The increasing complexity in recent real-

time systems coupled with requests for more

performance and shorter time to market have

produced a high interest to investigate advanced

design methods and technologies that could simplify

and improve the reliability of embedded software

design and implementation, while promoting the

reuse of software and hardware components for a co-

design system development.

In this complexity scenario on system

design, the manual coding is tedious, time consuming

and error prone. On the other hand, automatic code

generation implement the designers to create changes

in the system level model, and produce an HDL

implementation in minutes by regenerating the HDL

code. In this context, the electronic system design

adopts the model-driven engineering to automate the

design proposes. This approach solves more

challenging problems in terms of performance,

scalability, adaptability, and reduced development

time on system design.

The Model Driven Architecture (MDA) is

intended to support model-driven engineering of

software systems. The MDA framework is

combination of an intuitive graphical modeling

language, in conjugation with automatic model-

checking and code generation tools. This framework

contributes to significantly reduce development time,

both during the specification, system design phase

and during the test.

The complex system design requests leads

the whole system is integrated into a single chip; the

system size is restricted by the chip size. The current

integrated circuit technologies are approaching their

physical limits in terms of scaling and power

consumption. It has been estimated that the number

of integrated transistors on chip increases by 50 %

per year. Moreover, as the integration level escalates

in accordance with Moore’s law, the chip size is

getting smaller and smaller. The UML and MATLAB

are the most used automatic code generation tools in

MDA based ASIC/FPGA system design.

http://www.selectbs.com/analysis-and-design/what-is-model-driven-engineering

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

The current trend used for modeling system

controller behavior was Petri Nets (PN), which

allows the association of its static characteristics

(marking of the PN) and its dynamic characteristics

(firing of transitions) to the graphical characteristics

of the desired synoptic. The developed computer tool

interoperates with other tools developed under

FORDESIGN project, as the Petri Net graphical

editor and automatic VHDL code generator, allowing

the automatic generation code from behavioral

models.

Model-based design in Petri-Nets

environment for FPGA prototyping is very flexible

and makes implementation of control algorithms in

FPGA for power electronics and motor drives a lot

faster with no need of special attention to internal

connections in the device prototype. The prototype is

used to verify various control functions, modulation

methods and power flow regulation algorithms for

various tailor made power electronic design and

motor control applications in minimum time. Thus,

by using an FPGA-based controller, the designer is

able to build a fully dedicated digital system that is

perfectly adapted to the control algorithm being

implemented.

The following section presents the Model

Driven Architecture, Petri-Net based design

methodology and the development of Petri-Net based

FPGA Controller systems development

specifications. After, briefly present the tools, which,

taken as a whole, provide the support for that

methodology and finally this present an example

model, and conclude the test results.

2. MODEL DRIVEN ARCHITECTURE

The MDA proposes model transformations

to obtain executable model from a platform

independent model. MDA is intended to

support Model-Driven Engineering (MDE) of

software systems. MDE is a software development

methodology which focuses on creating and

exploiting domain models (that is, abstract

representations of the knowledge and activities that

govern a particular application domain), rather than

on the computing (or algorithmic) concepts.

The MDA is a specification that provides a

set of guidelines for structuring specifications

expressed as models. Adopting the MDA

methodology, system functionality could initial be

outlined as a platform-independent model (PIM)

through an appropriate Domain Specific Language.

Given a Platform Definition Model (PDM)

corresponding to C,.Net, the Web, etc., the PIM

could then be translated to at least one or a lot of

platform-specific models (PSMs) for the particular

implementation, using completely different Domain

Specific Languages, or a General Purpose Language

like VHDL, C,C++,Java, C#, Python, etc. The

translations between the PIM and PSMs are usually

performed using automated tools like model

transformation tools, as an example tools compliant

to the new OMG standard.

The principles of MDA may also be applied

to other areas like business method modeling

wherever the design and technology neutral PIM is

mapped onto either system or manual processes. The

Model driven architecture model is expounded to

multiple standards, like the Unified Modeling

Language (UML), Matlab/Simulink, and Petri-Net.

Note that the term “architecture” in Model-driven

design does not see the design of the system being

modeled, but rather to the design of the various

standards and model forms that functions the

technology basis for MDA.

MDA APPROACH

One of the main aims of the MDA is to

separate design from architecture and realization

technologies facilitating that design and architecture

can alter independently. The design addresses the

useful needs whereas design provides the

infrastructure through which non-functional

requirements like measurability, performance and

reliability are realized. MDA visualize that the

platform independent model (PIM), which represents

a conceptual design realizing the useful needs, will

survive changes in realization technologies and

software package architectures.

MDA TOOLS

An MDA tool is a tool used to develop,

compare, interpret, measure, align, transform, verify,

etc. models or Meta models. In the following section

"model" is interpreted as any kind of model (e.g. a

UML model) or meta-model. In any MDA approach

we have two kinds of models: initial models are

created manually by human agents while derived

models are created automatically by programs. An

MDA tool may be one or more of the listed functions

say, Creation, Analysis, Transformation,

Composition, Test, Simulation, Metadata

Management, Reverse Engineering

http://www.selectbs.com/analysis-and-design/microsoft-net
http://www.selectbs.com/software-asset-management/web-services
http://www.selectbs.com/analysis-and-design/code-synchronizers
http://www.selectbs.com/analysis-and-design/code-synchronizers
http://www.selectbs.com/analysis-and-design/what-is-the-unified-modeling-language-uml
http://www.selectbs.com/analysis-and-design/what-is-the-unified-modeling-language-uml

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

Fig 1: MDA Tool Framework

UNIFIED MODELING LANGUAGE

UML provides is the ability of modeling at

different levels of abstractions. Since C++ is object

oriented, a modeling language such as the UML can

be used to develop object modeling based systems.

Accordingly, UML satisfies the basic requirements to

link specifications with implementation:

visualization, modularization and abstractions.

The UML provides model image through a

variety of various kinds of diagrams. The UML

diagrams are divided into three main categories:

interaction diagrams, structural diagrams, and

behavioural diagrams. Interaction diagrams show the

present relationships as well as the exchange of

messages inside the system. Structural diagrams

show the building blocks of the system. Behavioural

diagrams show the system reactions to external and

internal events. UML provides thirteen completely

different diagrams. The usage of those diagrams

depends on what is being visualised. For example,

use case diagrams show the services that actors can

request from the system, whereas sequence diagrams

show the exchange of messages among the various

modules within the system, and class diagrams show

real-world entities and their relationships.

MATLAB/SIMULINK

MATLAB & Simulink enable an alternative

way to automatically generate readable and portable

IEEE standards compliant HDL from MATLAB,

Simulink and State flow models for a variety of

FPGAs. In addition, MATLAB model-based design

facilitates creation of FPGA-based prototypes and

automates HDL code verification by co-simulating it

with Simulink and optimizes the models to meet

speed-area-power objectives for the FPGA.

The MATLAB environment provides two

Model based tools for fast system development:

i) Xilinx System Generator and

ii) HDL Coder

Either of these approaches gives a good FPGA design

flow when used severally. But some projects take

pleasure in a combination of approaches a workflow

that combines the native Simulink workflow, device-

independent or device-specific code, and code

readability offered by Simulink HDL coder, with the

Xilinx FPGA-specific options and optimizations

offered by Xilinx System Generator.

3. PETRI NETS

Petri nets are graphical and mathematical

modeling tool applicable to several systems. They are

a promising tool for describing and learning

information processing systems that are characterized

as being synchronous, asynchronous, distributed,

parallel, nondeterministic, and random. As a

graphical tool, Petri nets can be used as a visual

communication aid nearly like block diagrams, flow

charts and networks. In addition, tokens are utilized

in these nets to simulate the synchronous and

dynamic activities of systems. As a mathematical

tool, it is possible to set up state equations,

mathematical models and other algebraic equations

governing the behavior of the systems.

MATLAB/SIMULINK,

UML, IOPT, SYSTEM

DESIGN FRAMEWORK

HDL CODE

ASIC FPGA

HDL (VHDL/VERILOG)

AUTOMATIC

CODE

GENERATION

CODE

VERIFY

1) Built In System Model

2) Analyze and Optimize the System Design

3) Elaborate Design For FPGA/ASIC

4) Generate HDL from Model

5) Verify HDL

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

Fig 2: PETRI-NETS Usage Framework

Petri net was introduced by Carl Adam Petri

in 1962. Petri net model is a graphical illustration

used to design a complex system. A diagrammatical

tool to model concurrency and synchronization in

distributed systems. It is terribly like State Transition

Diagrams. Utilized as a visual communication to

model the system behavior. It is based on strong

mathematical foundation. Petri net is a bipartite

graph. It consists of two parts a net structure and an

initial marking. A net (structure) contains two forms

of nodes: places and transitions. There are directed

arcs from transitions to places and directed arcs from

places to transitions in a net. Places are

diagrammatically represented by circles and

transitions by boxes or bars. A place can hold a token

which is denoted by black dots, or a positive integer

representing their number. The allocation of tokens

over the places of a net is termed a marking that

corresponds to a state of the modeled system. The

initial token distribution is hence referred to as the

initial marking.

4. IOPT PETRI-NETS

 IOPT stands for input output place

transition tool. IOPT tools are used to generate the

code automatically for the model designed. IOPT

tools have been developed by many members of the

R&D Group on Reconfigurable and Embedded

Systems (GRES). The mathematical properties of

IOPT Petri nets are applied to notice the design errors

during the early design stages, contributing to

minimize the time consumed during the check and

validation stages and reducing price and time-to

market.

The IOPT Petri net class inherits all

characteristics from P/T (place-transition) nets, and a

collection of non-autonomous extensions planned to

the design of embedded system controllers, providing

support for communication with physical devices,

together with the controlled systems and user

interfaces. The Web interface and the automatic code

generation provides a easy way to create embedded

system controllers, ready to be used even by persons

without deep knowledge of hardware and low-level

software code.

Fig 3: IOPT-Tools Web User Interface

The Web based new model-checking tools,

consist of a state-space generator, a query system and

a automatic code generator, were added to associate

existing tool framework that already had tools to

import and edit automatic code generators, controller

models and automatic hardware synthesis tools. The

new tools allows the automatic analysis of system

properties and the also the quick detection of errors

during early design stages, significantly reducing

debug and validation time. All tools share the similar

Web based user interface, publicly accessible on the

research group Web page (http://gres.uninova.pt).

Model definition and specification benefit

from the graphical nature of Petri nets, where design

often starts from a set of known use-cases. Complex

concurrent systems can be easily modelled as a

collection of individual sub-systems that are later

joined with the support of a net addition operation.

To detect design flaws, the framework contains a

model checking tool comprehending a state-space

generator and a query system used to extract

Source code and execution

XML Meta Data

Web Based

Graphical

Environment

FPGA Target

Design

Auto Source Code

Generation

System on Chip

Application

Requirements

 SoC

Mapping in to Specific Implementation Platform

Partition into Components

System

Model

Components

 BUS

 Bridge

http://gres.uninova.pt/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

information from the resulting state-space graphs.

The query system is necessary to analyze real-world

embedded system controllers that frequently lead to

very large state-space graphs with millions of states

and cannot be easily inspected by human operators.

Queries allow the detection of critical situations, as

the reachability of undesired states that would cause

malfunctions or expose users to physical danger. The

reachability of desired states can also be verified

using queries. For example, to verify the reachability

of ending-states where specific operations should

finish or the reachability of the initial state on

systems that must exhibit reversible behaviour.

In addition, the model-checking tools always

check important system properties, as the existence

of deadlocks and conflicts between net transitions.

Maximal place bounds are calculated to determine

the size of the memory elements, or data types, used

in controller implementations. The automatic code

generation tools compile IOPT controller models into

software source-code implementing the model's

execution semantics, minimizing the amount of

handwritten code that is reduced to simple interface

code, dependent on the target devices. Low level

details are hidden from the high-level models and the

error-prone and time consuming coding tasks are

almost eliminated.

The tools are offered under a Web-based user

interface, implementing an integrated development

environment, displayed in Figure 4. Users can upload

IOPT Petri net model files, perform model

visualization and edition, state space generation and

execute model-checking using a query editor and a

query results filter page. Finally, the automatic code

generation tool produces the controller code.

Fig 4: IOPT-Tools Web User Interface

System modeling and controller design is done using

the SnoopyIOPT Petri net editor, or other Petri net

editor supporting the PNML standard, with capability

to support the IOPT extensions. Controller

implementation was performed using several

automatic code generation tools, generating C

software code (PNML2C, IOPT2C) or VHDL

hardware descriptions (PNML2VHDL), according to

the target device.

Fig 5: Automatic Code Generation Tool

An Animator tool creates system synoptic and

graphical interfaces to interact with users. The

interfaces are designed by specifying a set of rules

relating the system state and input values with the

position and movement of graphical objects on

screen, without requiring writing any software code.

Another tool, GUIGen4FPGA, implements those

graphical user interfaces directly in FPGA hardware,

including a high resolution video generator and

pointing and touch device interfaces, enabling the

automatic creation of full embedded system

controllers comprehending the system controller and

a user interface.

5. SYSTEM MODEL

Closed-loop controls are utilized in

applications that need additional accurate and

adaptive control of the system. These controls use

feedback to direct the output states of a dynamic

system. Closed-loop controls overcome the

drawbacks of open loop control to produce

PNML

Vhdl

code

C code

Tas

k

To

ol

Synthe

sis

Tool

IP library

FPGA/S

OC

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

compensation for disturbances within the system,

reduced sensitivity to parameter variations, and

stability in unstable processes.

A PID controller is a closed-loop control

implementation that is widely used and is most

typically used as a feedback controller. The closed-

loop control regulates the speed of the motor by

directly dominant the duty cycle of the PWM signals

that direct the motor drive circuitry. The main

distinction between the two control systems is that

the open-loop control considers only the speed

control input to update the duty cycle of the PWM,

whereas the closed-loop control considers both

speed-input control and actual motor speed (feedback

to controller) for changing the PWM duty cycle and

in turn the motor speed.

 The System Architecture of Implementation

given in Fig 6, the Speed Control Input unit provides

motor speed input to the system. This input can be

either digital or analog. The actual motor speed is fed

back to the closed-loop controller, which is

implemented on an FPGA. The PID controller is used

as the closed-loop control algorithm to trace the

actual motor speed and also apply the speed control

input. Based on speed control input and present and

past errors (proportional and integral values), the

closed-loop control will either increases or decreases

the PWM duty cycle, that successively controls the

speed of the motor.

Fig 6: System Model Architecture

The FPGA – Motor Controller module consist of

Noise Filter, QE Decoder, PWM Generator, and

BLDC Communication Manager.

NOISE FILTER

Filters high frequency glitches from

feedback signals.

QE DECODER

Decode the Quadrature signals produced by

encoders, used to count pulses produced by the rotary

encoder found in the FPGA board. In more advanced

control strategies, this module could also be used to

read the rotor position from feedback encoders on the

motor shaft.

PWM GENERATOR

Output two complementary center aligned

PWM signals according to the input period and duty-

cycle values, with 500ns dead-time insertion.

Another signal is used to blank spurious spikes in the

current limit signal, produced during semiconductor

switching.

BLDC COMMUTATION MANAGER

Redirects PWM signals to the correct

U/V/W motor phases according to the selected

commutation sector and current/torque direction.

SAMPLE IOPT MODEL

The sample implementation of PWM model is given

in fig 7 using IOPT Petri net.

Fig 7: PWM generator

6. PROTOTYPE MODEL

The simple closed loop system BLDC

motor control model designed for real-time

justification as given in Fig 8. The designed models

are inserted in the IOPT-Tools Web service

(http://gres.uninova.pt). To examine for deadlocks,

unreachable desired states the model checking tools

were applied.

ACSUPPLY RECTIFIER

PULSE

DRIVER AND

ISOLATION

CIRCUIT

FPGA – MOTOR

CONTROLLER

SWITCHING

CIRCUIT

VOLTAGE

DIVIDER

CIRCUIT

ADC BLDC

http://gres.uninova.pt/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

The VHDL code synthesis tools were

applied to every model, producing VHDL codes for

designed modules that were appended to a Xilinx ISE

project.

 Fig 8: Closed Loop system BLDC Motor Model

The Test FPGA board uses Spartan3AN

X700 FPGA with 50MHz clock with required motor

driver circuits.

Although the VHDL code created by the

automatic code generator is not optimal and includes

several dead sections preceded by conditions that are

always false or always true, the optimizing tools

provided by FPGA vendors can easily remove the

dead sections and produce a virtually optimal result.

As a consequence, the FPGA resource consumption

of the whole project is very small, corresponding to

approximately 3% of the resources available on the

Spartan3 FPGA.

7. CONCLUSION

The main goal of the work is to control the

speed of BLDC motors using IOPT Petri net models.
IOPT models provide a very simple and intuitive way

to specify the desired system behavior. By dividing

entire systems in small components that can later be

inter-connected, complexity can be kept at very low

levels and sub-systems are easily validated with the

model- checking tools. Codes are generated for each

subsystem and these codes are interconnected to

single module. The dead sections of automatic code

generation need to be improved on IOPT tools.

REFERENCES:

[1] FPGA based Speed Control of Brushless DC

Motors using IOPT Petri Net models. Pereira.F,

Gomes,L. Industrial Technology (ICIT), 2013 IEEE

International Conference on Digital Object Identifier:

10.1109/ICIT.2013.6505810 Publication Year: 2013 ,

Page(s): 1011 - 1016

[2] L.Gomes, J.Barros, A.Costa, and R.Nunes, “The

Input-Output Place-Transition Petri Net Class and

Associated Tools,” in Proceedings of the 5th IEEE

International Conference on Industrial Informatics

(INDIN’07), Vienna, Austria, July 2007.

[3] F.Moutinho, L.Gomes, “From models to

controllers integrating graphical animation in FPGA

through automatic code generation,” in IEEE

International Symposium on Industrial Electronics

(ISlE 2009), Seoul Olympic Parktel, Seoul, Korea,

July 5-8 2009.

 [4] Ming-Fa Tsai, Tran Phu Quy, Bo-Feng Wu,

Chung-Shi Tseng , "Model construction and

verification of a BLDC motor using

MATLAB/SIMULINK and FPGA control,"

Industrial Electronics and Applications (ICIEA),

2011 6th IEEE Conference on, vol., n., pp.1797-

1802, 21-23 June 2011doi:

10.1109/ICIEA.2011.5975884

 [5] R. Nunes, L.Gomes, J.P.Barros, "A graphical

editor for the input-output place-transition petri net

class", Emerging Technologies and Factory

Automation, 2007. ETFA. IEEE Conference on , vol.,

no., pp.788-791, 25-28 Sept. 2007

 [6] Pereira.F, Moutinho.F, Gomes.L , "Model-

checking framework for embedded systems

controllers development using IOPT Petri nets,"

Industrial Electronics (ISIE), 2012 IEEE

International Symposium on , vol., no., pp.1399-

1404, 28-31 May 2012 doi:

10.1109/ISIE.2012.6237295

[7] W. Reisig, “Petri nets: an introduction.” NY,

USA: SpringerVerlag New York, Inc., 1985.

